If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d^2+11d=0
a = 8; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·8·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*8}=\frac{-22}{16} =-1+3/8 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*8}=\frac{0}{16} =0 $
| (4x+26)=a | | 180=120+3y | | 180=95+5x | | (x+13=3x+63.x) | | 2x+1=5x-6-3x-2 | | t*2/4-9=0 | | 63+(7t+5)=180 | | 5(2v+3)-2=12v+12=2v | | -6b=-3+27 | | 5+0y=10 | | 9x=7+77 | | 19i+18j-10=0 | | 1/4+3c=8/10 | | 50000+100x=0 | | 38=10h+7 | | 5x+7+3x+13=180 | | 10x-15+5x=90 | | 1/4-(5x-1/8)=5-x/6 | | 1/4-5x-1/8=5-x/6 | | 215*x=500 | | 9r+2+70=180 | | 0.007x+0.003=0.1 | | 5.2=g | | 4k+1=3k+10 | | y=-3.5/3+4 | | y=-2.5/3+4 | | y=-1.5/3+4 | | y=-5/3+4 | | 7m=416 | | 27x-18=10 | | 6x+10-8x=19-17x+15x-9 | | x^2+19/12x=3/2 |